Al can recognize

Handwriting

Aayesha Islam



Introduction

It is crucial for us to have technology to recognize handwriting and be able
to digitize it. This could lead to preserving old handwritten books, letters,
parchments, and other important documents. Although this can be done by
humans reading and typing out a digitized version of the particular
document, using Al to accomplish this will make the process more efficient.
In this project, an existing labeled dataset was used to train an Al Neural

Network model so that it could recognize words written by hand.

Code

This code was written in the language Python on the Google Colab
platform, which allows code to be shared online.

It starts off by importing a dataset. This code is performing several tasks
related to the EMNIST (Extended MNIST) dataset, which is an extension of
the popular MNIST dataset. The MNIST dataset consists of images of
handwritten alphabets, commonly used for training and testing machine
learning models. It clones a GitHub repository, downloads the MNIST
dataset, installs the emnist library, and imports the required function for

extracting training samples from the EMNIST dataset.



Downloaded: 6 files, 11M in ©.1s (13 MB/s)

/content/data /content
/content
Collecting emnist

Downloading emnist-@.@-py3-none-any.whl (7.3 kB)

Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Installing collected packages:

numpy in /usr/local/lib/python3.18/dist-packages (from emnist) (1.23.5)

requests in /usr/local/lib/python3.10/dist-packages (from emnist) (2.31.0)

tqdm in /usr/local/lib/python3.1@/dist-packages (from emnist) (4.66.1)

charset-normalizer<4,>=2 in /usr/local/lib/python3.18/dist-packages (from requests->emnist) (3.3.2)
idna<4,>=2.5 in /usr/local/lib/python3.1@/dist-packages (from requests->emnist) (3.4)
urllib3<3,>=1.21.1 in /usr/local/lib/python3.1@/dist-packages (from requests->emnist) (2.0.7)
certifi>=2017.4.17 in /usr/local/lib/python3.18/dist-packages (from requests->emnist) (20823.7.22)
emnist

Successfully installed emnist-©.0
Imported the EMNIST libraries we need!

In the above image we can see the results after running the code section.

Next it fetches the EMNIST "letters" dataset from the OpenML website,

containing 145,600 28x28 pixel images of letters. It normalizes the pixel

values to a range of 0 to 1, splits the dataset into training and testing sets

(60,000 for training and 10,000 for testing), and reshapes the data to align

with the neural network architecture. The code concludes by confirming the

successful extraction and division of the dataset.

To confirm whether the dataset was properly accessed, the code accesses

a particular index and displays the results. From this, we can see what the

dataset looks like and we can infer that our test data has to look similar.



import matplotlib.pyplot as plt

img index = 12800 # <<<<<

img = X train[img_index]

print(“Image Label: " + str(chr(y train[img index]+96)))
plt.imshow(img.reshape((28,28)))

Image Label: r
<matplotlib.image.AxesImage at @x7b3cadb3c250>




import matplotlib.pyplot as

img_index = 397 #
img = X _train[img_index]
print (" Image : str(chr(y_train[img_index]+96)))

plt.imshow(img.reshape((28,28)))

Image Label: f
<matplotlib.image.AxesImage at @x7b3c4839c280>




import matplotlib.pyplot as

img_index = 50000 # <<<<<
img = X_train[img_index]

print("Image Label: + ( _train[img_index]+96)))

plt.imshow(img.reshape(

Image Label: e
<matplotlib.image.AxesImage at 8x7b3c3fa@5090>

If you put different indexes, different letters that are stored and labeled can
be discovered. These images are able to be clearly interpreted by the Al

even though to us they are a bit hazy.

Now that we've examined the data, next is to construct a neural network to

take an image as input and predict the corresponding letter. A multi-layer



perceptron (MLP) is perfect for this task. Instead of coding everything from

scratch, an existing library that offers MLP tools is used.

ese TwWwD l1ines 1mport The L 1JDraries

from sklearn.datasets import fetch_openml

from sklearn.neural network import MLPClassifier

Initially, an MLP classifier with a single hidden layer containing 50 neurons
is made, and trained on the data for 20 iterations. Various learning
parameters, such as the learning rate, are set to configure the MLP.
Adjusting these parameters can influence the performance of the MLP

during training and testing.

Next is testing the algorithm using the training data and seeing how well it
performs. There are a few values we have to look out for.

The following code is used for testing.

mlpl.fit(X train, y train)
print("Training set score: %" % mlpl.score(X train, y train))

print("Test set score: %f" % mlpl.score(X test, y test))

The output of this code is as below.



Iteration loss

b

loss =
loss =

Iteration
Iteration

L™

b

loss =
loss =

Iteration
Iteration

L]

(9 I -l WU Iy X By ]

b

loss =
loss =

Iteration
Iteration

00 =]
[P

L")

loss =
loss =

Iteration
Iteration

D200 0000

Lo
-

loss =
loss =

Iteration
Iteration

(R
= &=
L~ L™

Iteration 12, loss =
Iteration 13, loss =
Iteration 14, loss =
Iteration 15, loss =
Iteration 16, loss =
Iteration 17, loss =
Iteration 18, loss =
Iteration 19, loss =
Iteration 20, loss =

2280 80 3800380

Jusr/local/lib/python3.

warnings.warn(
Training set score: 8.
Test set score: 8.8488

-B6351395
. 64844658
-56183245
-51987725
-49182899
-A7381057
-458392206
-AA683836
43479721

LA2809575
41639233
A8 782988
.AB548360
.39965983
.39296832
.38883219
.38393955
.37948343
.37387616
37166732
18/dist-packages/4

886500
[51%]

Some terms that are seen are:

Iteration: The number of times the training data is run through the

algorithm.

Loss: A mathematical fun

ction that computes the difference between the

predicted output and the actual target. The model adjusts its internal

parameters during training to minimize this loss, making the predicted

output closer to the true values. The loss value ideally decreases as the

number of iterations increases.



If this code is run more times, the results are similar but slightly different
each time, and this is because the neutrons are weighted differently each

time.

-B6351395
. 648446506
-56183245
.51987725
-A9182899
-A7381057
-A5839278
-AA683836
3479721
-AJ2BB9575
41639233
-A8782988
. 48548368
-39965983
.39296832
38883219
38393955
. 37948343

Iteration 1, loss =
Iteration 2, loss =
Iteration loss =
Iteration loss =
Iteration loss =
Iteration 6, loss =
Iteration loss =
Iteration loss =

D 2O 00 D=

Lo I I v T s [T cw B v T L B = R

Iteration loss
Iteration 1 loss =
Iteration 1 loss
Iteration 1 loss
Iteration loss
Iteration 1 loss
Iteration 1 loss
Iteration I loss
Iteration 1 loss
Iteration 18, loss
Iteration 19, loss .37387616
Iteration 28, loss .37166732
Jusrflocal/1ib/python3.18/dist-packages/sklearn
warnings.warn(

Training set score: B.386500
Test set score: O.840800

A confusion matrix is the next step as it helps in figuring out where the

accuracy is lowering.



from sklearn.metrics import confusion matrix

cm = confusion matrix(y test, y pred)

plt.matshow(cm)

<matplotlib.image.AxesImage at Ox7db2T431leech:

The below is an example of a change in the brightness of the confusion if

the hidden layers values are changed from 50 to 30.



<matplotlib.image.AxesImage at Ox7db2e884e650>

Inaccurate results can happen when the algorithm mixes up different letters

which are similar, such as “I” and “I”.

The brightness of each cell in the confusion matrix indicates the quantity of
elements within that cell, with a higher brightness denoting more elements.
The matrix is structured with rows representing correct values and columns
representing predicted values. The numerical labels on the axes

correspond to the 26 letters of the alphabet (in the case of EMNIST, letters



are represented by numbers, where O corresponds to "A," 1 to "B," and so
on). The intensity of cell (0,0) signifies the frequency of correct predictions
for the letter "A." The diagonal cells portray instances where the predicted
value aligns with the actual value, forming a conspicuous bright line. Any

cells outside this diagonal line that are brighter need further investigation.

There were 84 times that the letter i was predicted to be the letter 1.




This is another example of confusing letters. This means that it is confusing

these letters less and the number of errors are less.

There were 13 times that the letter n was predicted to be the letter m.

The accuracy of this can be increased. One approach involves increasing
the complexity of the network by adding more hidden layers and neurons

within those layers. For instance, to incorporate an additional hidden layer
containing 50 neurons, the adjustment can be made as follows:

hidden_layer_sizes=(50,50,).



Another strategy is extending the training duration by increasing the
number of epochs (or iterations). For example, modifying the parameter

max_iter to max_iter=30 would achieve this.

rut

# affect performance

mlp2 = MLPClassifier(hidden_layer_sizes=(100,160,168,180,108,), max_iter=58, alpha=le-4,
solver="sgd', verbose=18, tol=le-4, random_state=1,
learning rate init=.1)

mlp2.fit(X_train, y train)

print("Training %f" % mlp2.score(X_train, y_train))

print("Test set score: %f" % mlp2.score(X_test, y test))

- 18179144
.17865358
- 17174149
.17433637
- 17649781
- 179657416
- 16644986
- 16974646

Iteration loss =
Iteration loss =
Iteration 43, loss =
Iteration loss =
Iteration loss =
Iteration loss =
Iteration loss =
Iteration 48, loss =
Iteration 49, loss = 08.16569554

Iteration 568, loss = ©.16854811

fusr/local/lib/python3.18/dist-packages/

warnings.warn(

20 88 2882 DD g

Training set score: ©.952167
Test set score: 6.898700

This considerably increased the score. It can also be changed as follows.
Here, | changed the number of iterations and hidden layer values to see

whether | would get a higher score. The score was increased from 95 to 96.



mlpz = HLPLlaqblfler(hldden laver sizes 8, 260 ,200,200,200, ), max_iter=30, alpha=le-4,
-4, random state=1,

mlp2.fit(X train
print("Training
print{"Test set

- 11985547
12294478
- 11664134
12189476
. 11680624
Iteration : -12311795
Iteration 11334774
fuarflocalfllbfpython3.1dei5t—packagezfﬁklearnf
warnings.warn(
Training set score: B.960617
Test set score: 0.3896008

Iteration :
Iteration :
Iteration :
Iteration :
Iteration 28,

.
a
a
a
a
(%)
a
= 8

Next is to get the Al to read our own handwriting. Initially, letters are written
on a paper and scanned, but there is a size issue as these images are
much larger than the Al can read. After the modifications, check a certain

index and see how it looks.



Imported the scanned images.
<matplotlib.image.AxesImage at Bx7db2e9127048>

This looks very clean for a human but the Al has issues interpreting it.
If tested now, this type of wrong output can be seen due to how different
this image is from the EMNIST training data.

the fault tn our rgwfk sypplies f ffl11 fn luye rhe way yguk batteky oies slowlr aao then all at oncf

Essentially, the strokes need to be more blurry, the letter has to be at the

very center of the image and the rest has to be cropped, and resized to be



28x28 pixels. This below is the processed image with the modifications.

This should be easier for the Al to read.

Processed the scanned images.
<matplotlib.image.AxesImage at Ox7db2e%1baef8>

More words can certainly be identified now. Despite the fact that our neural
network didn't achieve 100% accuracy, it is anticipated to exhibit a
comparable error rate in this context, possibly even slightly higher, given

the distinct size at which these letters were originally generated. However,



by considering the context and being aware of the letters that are prone to

be confused with each other, the narrative remains comprehensible.

the fault In ou-r owek supplies 1 fell in love the way your battery dirs skowly and thrn all at once




