
AI can recognize

Handwriting

Aayesha Islam



Introduction

It is crucial for us to have technology to recognize handwriting and be able

to digitize it. This could lead to preserving old handwritten books, letters,

parchments, and other important documents. Although this can be done by

humans reading and typing out a digitized version of the particular

document, using AI to accomplish this will make the process more efficient.

In this project, an existing labeled dataset was used to train an AI Neural

Network model so that it could recognize words written by hand.

Code

This code was written in the language Python on the Google Colab

platform, which allows code to be shared online.

It starts off by importing a dataset. This code is performing several tasks

related to the EMNIST (Extended MNIST) dataset, which is an extension of

the popular MNIST dataset. The MNIST dataset consists of images of

handwritten alphabets, commonly used for training and testing machine

learning models. It clones a GitHub repository, downloads the MNIST

dataset, installs the emnist library, and imports the required function for

extracting training samples from the EMNIST dataset.



In the above image we can see the results after running the code section.

Next it fetches the EMNIST "letters" dataset from the OpenML website,

containing 145,600 28x28 pixel images of letters. It normalizes the pixel

values to a range of 0 to 1, splits the dataset into training and testing sets

(60,000 for training and 10,000 for testing), and reshapes the data to align

with the neural network architecture. The code concludes by confirming the

successful extraction and division of the dataset.

To confirm whether the dataset was properly accessed, the code accesses

a particular index and displays the results. From this, we can see what the

dataset looks like and we can infer that our test data has to look similar.







If you put different indexes, different letters that are stored and labeled can

be discovered. These images are able to be clearly interpreted by the AI

even though to us they are a bit hazy.

Now that we've examined the data, next is to construct a neural network to

take an image as input and predict the corresponding letter. A multi-layer



perceptron (MLP) is perfect for this task. Instead of coding everything from

scratch, an existing library that offers MLP tools is used.

Initially, an MLP classifier with a single hidden layer containing 50 neurons

is made, and trained on the data for 20 iterations. Various learning

parameters, such as the learning rate, are set to configure the MLP.

Adjusting these parameters can influence the performance of the MLP

during training and testing.

Next is testing the algorithm using the training data and seeing how well it

performs. There are a few values we have to look out for.

The following code is used for testing.

The output of this code is as below.



Some terms that are seen are:

Iteration: The number of times the training data is run through the

algorithm.

Loss: A mathematical function that computes the difference between the

predicted output and the actual target. The model adjusts its internal

parameters during training to minimize this loss, making the predicted

output closer to the true values. The loss value ideally decreases as the

number of iterations increases.



If this code is run more times, the results are similar but slightly different

each time, and this is because the neutrons are weighted differently each

time.

A confusion matrix is the next step as it helps in figuring out where the

accuracy is lowering.



The below is an example of a change in the brightness of the confusion if

the hidden layers values are changed from 50 to 30.



Inaccurate results can happen when the algorithm mixes up different letters

which are similar, such as “I” and “l”.

The brightness of each cell in the confusion matrix indicates the quantity of

elements within that cell, with a higher brightness denoting more elements.

The matrix is structured with rows representing correct values and columns

representing predicted values. The numerical labels on the axes

correspond to the 26 letters of the alphabet (in the case of EMNIST, letters



are represented by numbers, where 0 corresponds to "A," 1 to "B," and so

on). The intensity of cell (0,0) signifies the frequency of correct predictions

for the letter "A." The diagonal cells portray instances where the predicted

value aligns with the actual value, forming a conspicuous bright line. Any

cells outside this diagonal line that are brighter need further investigation.



This is another example of confusing letters. This means that it is confusing

these letters less and the number of errors are less.

The accuracy of this can be increased. One approach involves increasing

the complexity of the network by adding more hidden layers and neurons

within those layers. For instance, to incorporate an additional hidden layer

containing 50 neurons, the adjustment can be made as follows:

hidden_layer_sizes=(50,50,).



Another strategy is extending the training duration by increasing the

number of epochs (or iterations). For example, modifying the parameter

max_iter to max_iter=30 would achieve this.

This considerably increased the score. It can also be changed as follows.

Here, I changed the number of iterations and hidden layer values to see

whether I would get a higher score. The score was increased from 95 to 96.



Next is to get the AI to read our own handwriting. Initially, letters are written

on a paper and scanned, but there is a size issue as these images are

much larger than the AI can read. After the modifications, check a certain

index and see how it looks.



This looks very clean for a human but the AI has issues interpreting it.

If tested now, this type of wrong output can be seen due to how different

this image is from the EMNIST training data.

Essentially, the strokes need to be more blurry, the letter has to be at the

very center of the image and the rest has to be cropped, and resized to be



28x28 pixels. This below is the processed image with the modifications.

This should be easier for the AI to read.

More words can certainly be identified now. Despite the fact that our neural

network didn't achieve 100% accuracy, it is anticipated to exhibit a

comparable error rate in this context, possibly even slightly higher, given

the distinct size at which these letters were originally generated. However,



by considering the context and being aware of the letters that are prone to

be confused with each other, the narrative remains comprehensible.


